133 research outputs found

    Recent advances in x-ray cone-beam computed laminography

    No full text
    X-ray computed tomography is a well established volume imaging technique used routinely in medical diagnosis, industrial non-destructive testing, and a wide range of scientific fields. Traditionally, computed tomography uses scanning geometries with a single axis of rotation together with reconstruction algorithms specifically designed for this setup. Recently there has however been increasing interest in more complex scanning geometries. These include so called X-ray computed laminography systems capable of imaging specimens with large lateral dimensions, or large aspect ratios, neither of which are well suited to conventional CT scanning procedures. Developments throughout this field have thus been rapid, including the introduction of novel system trajectories, the application and refinement of various reconstruction methods, and the use of recently developed computational hardware and software techniques to accelerate reconstruction times. Here we examine the advances made in the last several years and consider their impact on the state of the art

    Electrodeposition of platinum on titanium felt in a rectangular channel flow cell

    No full text
    Highly porous platinised titanium substrates are attractive electrode materials for industrial electrochemical processing and electrochemical energy storage. The electrodeposition of platinum on titanium felt was carried out in a divided, rectangular channel flow cell from an alkaline bath without additives. The morphology and spatial distribution of the platinum deposits in the porous material were analysed using SEM and EDS microscopy in addition to X-ray computed tomography (CT). The electroplated surface area was estimated from the charge transfer current ratio for Ce(IV) reduction and related to a theoretical electrosorbed hydrogen monolayer surface area. The platinised titanium felt showed a significant enhancement of active surface area in comparison to conventional electrode materials. Although platinum was present throughout the porous electrode, CT revealed heterogeneous deposits accumulating in regions near the membrane (during electrodeposition), as a result of the potential distribution in the felt material and flowing electrolyte. Uniform platinum coatings are possible on thin titanium felt under 200 µm thick, by either potentiostatic or galvanostatic electrodepositio

    A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms

    Get PDF
    We describe a genetic variation map for the chicken genome containing 2.8 million single-nucleotide polymorphisms ( SNPs). This map is based on a comparison of the sequences of three domestic chicken breeds ( a broiler, a layer and a Chinese silkie) with that of their wild ancestor, red jungle fowl. Subsequent experiments indicate that at least 90% of the variant sites are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about five SNPs per kilobase for almost every possible comparison between red jungle fowl and domestic lines, between two different domestic lines, and within domestic lines - in contrast to the notion that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated before domestication, and there is little evidence of selective sweeps for adaptive alleles on length scales greater than 100 kilobases

    Lynch Syndrome-Associated Extracolonic Tumors Are Rare in Two Extended Families With the Same EPCAM Deletion

    Get PDF
    The Lynch syndrome (LS) is an inherited cancer syndrome showing a preponderance of colorectal cancer (CRC) in context with endometrial cancer and several other extracolonic cancers, which is due to pathogenic mutations in the mismatch repair (MMR) genes, MLH1, MSH2, MSH6, and PMS2. Some families were found to show a LS phenotype without an identified MMR mutation, although there was microsatellite instability and absence of MSH2 expression by immunohistochemistry. Studies of a subset of these families found a deletion at the 3′ end of the epithelial cell adhesion molecule (EPCAM) gene, causing transcription read-through resulting in silencing of MSH2 through hypermethylation of its promoter. The tumor spectrum of such families appears to differ from classical LS

    Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition

    Get PDF
    In birds, as in mammals, one pair of chromosomes differs between the sexes. In birds, males are ZZ and females ZW. In mammals, males are XY and females XX. Like the mammalian XY pair, the avian ZW pair is believed to have evolved from autosomes, with most change occurring in the chromosomes found in only one sex—the W and Y chromosomes1, 2, 3, 4, 5. By contrast, the sex chromosomes found in both sexes—the Z and X chromosomes—are assumed to have diverged little from their autosomal progenitors2. Here we report findings that challenge this assumption for both the chicken Z chromosome and the human X chromosome. The chicken Z chromosome, which we sequenced essentially to completion, is less gene-dense than chicken autosomes but contains a massive tandem array containing hundreds of duplicated genes expressed in testes. A comprehensive comparison of the chicken Z chromosome with the finished sequence of the human X chromosome demonstrates that each evolved independently from different portions of the ancestral genome. Despite this independence, the chicken Z and human X chromosomes share features that distinguish them from autosomes: the acquisition and amplification of testis-expressed genes, and a low gene density resulting from an expansion of intergenic regions. These features were not present on the autosomes from which the Z and X chromosomes originated but were instead acquired during the evolution of Z and X as sex chromosomes. We conclude that the avian Z and mammalian X chromosomes followed convergent evolutionary trajectories, despite their evolving with opposite (female versus male) systems of heterogamety. More broadly, in birds and mammals, sex chromosome evolution involved not only gene loss in sex-specific chromosomes, but also marked expansion and gene acquisition in sex chromosomes common to males and females.National Science Foundation (U.S.)Howard Hughes Medical Institut

    Proteome Analysis of Borrelia burgdorferi Response to Environmental Change

    Get PDF
    We examined global changes in protein expression in the B31 strain of Borrelia burgdorferi, in response to two environmental cues (pH and temperature) chosen for their reported similarity to those encountered at different stages of the organism's life cycle. Multidimensional nano-liquid chromatographic separations coupled with tandem mass spectrometry were used to examine the array of proteins (i.e., the proteome) of B. burgdorferi for different pH and temperature culture conditions. Changes in pH and temperature elicited in vitro adaptations of this spirochete known to cause Lyme disease and led to alterations in protein expression that are associated with increased microbial pathogenesis. We identified 1,031 proteins that represent 59% of the annotated genome of B. burgdorferi and elucidated a core proteome of 414 proteins that were present in all environmental conditions investigated. Observed changes in protein abundances indicated varied replicon usage, as well as proteome functional distributions between the in vitro cell culture conditions. Surprisingly, the pH and temperature conditions that mimicked B. burgdorferi residing in the gut of a fed tick showed a marked reduction in protein diversity. Additionally, the results provide us with leading candidates for exploring how B. burgdorferi adapts to and is able to survive in a wide variety of environmental conditions and lay a foundation for planned in situ studies of B. burgdorferi isolated from the tick midgut and infected animals
    corecore